Indexing and Efficient Instance-Based Retrieval of Process Models Using Untanglings

نویسندگان

  • Artem Polyvyanyy
  • Marcello La Rosa
  • Arthur H. M. ter Hofstede
چکیده

Process-Aware Information Systems (PAISs) support executions of operational processes that involve people, resources, and software applications on the basis of process models. Process models describe vast, often infinite, amounts of process instances, i.e., workflows supported by the systems. With the increasing adoption of PAISs, large process model repositories emerged in companies and public organizations. These repositories constitute significant information resources. Accurate and efficient retrieval of process models and/or process instances from such repositories is interesting for multiple reasons, e.g., searching for similar models/instances, filtering, reuse, standardization, process compliance checking, verification of formal properties, etc. This paper proposes a technique for indexing process models that relies on their alternative representations, called untanglings. We show the use of untanglings for retrieval of process models based on process instances that they specify via a solution to the generalized executability problem. Experiments with industrial process models testify that the proposed retrieval approach is up to three orders of magnitude faster than the state of the art.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Content Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram

Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a  database. In medical applications, CBIR is a tool used by physicians to compare the previous and current  medical images associated with patients pathological conditions. As the volume of pictorial information  stored in medical image databases is in progress, efficient image indexing and retri...

متن کامل

تأملاتی بر نمایه‌ سازی تصاویر: یک تصویر ارزشی برابر با هزار واژه

Purpose: This paper presents various  image indexing techniques and discusses their advantages and limitations.             Methodology: conducting a review of the literature review, it identifies three main image indexing techniques, namely concept-based image indexing, content-based image indexing and folksonomy. It then describes each technique. Findings: Concept-based image indexing is te...

متن کامل

A Comparing between the impacts of text based indexing and folksonomy on ranking of images search via Google search engine

Background and Aim: The purpose of this study was to compare the impact of text based indexing and folksonomy in image retrieval via Google search engine. Methods: This study used experimental method. The sample is 30 images extracted from the book “Gray anatomy”. The research was carried out in 4 stages; in the first stage, images were uploaded to an “Instagram” account so the images are tagge...

متن کامل

Multidimensional term indexing for efficient processing of complex queries

The area of Information Retrieval deals with problems of storage and retrieval within a huge collection of text documents. In IR models, the semantics of a document is usually characterized using a set of terms. A common need to various IR models is an efficient term retrieval provided via a term index. Existing approaches of term indexing, e. g. the inverted list, support efficiently only simp...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014